卧式动态拉伸试验机轴承故障诊断方法研究

Research on Fault Diagnosis Methods for Bearings in Horizontal Dynamic Tensile Testing Machines

  • 摘要: 滚动轴承作为卧式动态拉伸试验机的核心零件,其健康状态直接影响设备性能。现有的轴承故障诊断方法在特征提取精度和时序信息的表达上存在明显不足,难以准确捕捉复杂故障模式的变化,特别是在面对复杂故障模式时。因此,开发一种更有效的故障诊断模型对于确保设备的可靠性和安全性至关重要。本文提出一种用于卧式动态拉伸试验机轴承故障诊断的模型。首先,以最小包络熵为优化目标,利用SSA对VMD参数进行自动寻优。使用优化后的VMD参数分解轴承信号,获取内在模态函数(IMF)。最后,通过CNN提取故障特征,并将其输入BiLSTM进行时序特征的进一步表达,最终实现故障分类。实验结果显示,模型的故障识别准确率达到了99.01%。

     

    Abstract: As the core component of a horizontal dynamic tensile testing machine, the health status of rolling bearings directly impacts equipment performance. However, existing bearing fault diagnosis methods show significant limitations in feature extraction accuracy and temporal information representation, making it challenging to capture complex fault pattern variations accurately. Therefore, this study proposes a new model for fault diagnosis of bearings in horizontal dynamic tensile testing machines. First, with minimum envelope entropy as the optimization objective, the SSA is used to automatically optimize VMD parameters. Then, the optimized VMD parameters are applied to decompose the bearing signal and obtain intrinsic mode functions (IMFs). Finally, a CNN is employed to extract fault features, which are then input into a BiLSTM to further express temporal features, ultimately achieving fault classification. Experimental results show that the model achieved an accuracy rate of 99.01% in fault identification.

     

/

返回文章
返回