基于BPNN的3D打印TC4钛合金力学性能预测

Prediction of Mechanical Properties of 3D Printed TC4 Titanium Alloy based on BPNN

  • 摘要: 给出了一种基于BP神经网络方法预测3D打印TC4钛合金力学性能相关的工艺参数设计方法,文中利用BP神经网络算法,以材料的屈服强度、抗拉强度、致密度等参数作为特征输入量,以3D打印工艺参数作为输出目标量,预测3D打印参数,研究得出BP神经网络算法能用更少数据集达到很好效果且能更精准预测多特征值任务的结果,验证了BP神经网络算法在3D打印参数预测方面的有效性,此结果的价值及意义在于为3D打印参数的预测提供了更高效精准的方法。

     

    Abstract: This article presents a process parameter design method related to predicting the mechanical properties of 3D - printed TC4 titanium alloy based on the BP neural network method. In this paper, the author carried out research on the BP neural network algorithm for predicting 3D printing parameters specifically for parameters such as material yield strength, tensile strength, density, and 3D printing process parameters. It is concluded that the BP neural network algorithm can achieve good results with fewer data sets and can more accurately predict tasks with multiple feature values. This verifies the effectiveness of the BP neural network algorithm in predicting 3D printing parameters. The value and significance of this result lie in providing a more efficient and accurate method for predicting 3D printing parameters.

     

/

返回文章
返回